
 POLITECNICO DI BARI
DIPARTIMENTO DI INGEGNERIA ELETTRICA E

DELL'INFORMAZIONE  
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA

INFORMATICA

Thesis in

ADVANCED SOFTWARE ENGINEERING

Software sustainability and
maintenance in industries

 
Supervisor: 
Prof.ssa Marina MONGIELLO 
Co-supervisor: 
Ing. Francesco NOCERA  
Prof.re Carlos CARRILLO 
Prof.re Rafael CAPILLA

 
 
 
 
 

Author:  
Michele SCARIMBOLO 

 

Academic Year 2018/2019

�2

Index

I. Introduction 5..
Software sustainability	 7
..

Sustainable architectures	 9
..
Long-Lived decisions	 10
..

Kanban software development	 13
...
Git systems	 16
..

Branching and merging	 16
...
Small and fast	 18
...

Continuous software engineering	 21
..
Continuos Integration	 22
...

Overview and detail CI process	 23
..

Continuous Deployment	 28
...

II. Software developed 31..
Functionalities	 32
...

Home page	 32
..
Creation of project	 33
..
Project page	 34
..
Design decision page	 38
..

Code: main artifacts	 42
..
Example	 42
..
Model View Presenter (MVP)	 44
...

Benchmarking	 49
...
Trello	 49
...

Comparison	 50
...

Asana	 52
...
Comparison	 53
...

Asana vs Trello	 56
...

III. Results and future developments 57..
Continuous engineering in our software	 58
..

Using GitLab for CI/CD	 59
...

Git and social developments	 61
..

IV. Bibliografy 62..

�3

�4

I. Introduction
The software maintenance cost has risen to 70% of the data processing
budget in some corporations. Some of the crucial factors contributing to
the software maintenance problems are identified and discussed and
some management and technical solutions to the pressing problems are
proposed. Over the past 20 years the classic project management
methodologies for software development have been recognized as
being unsuitable for bringing a sufficient percentage of projects to
complete success. Traditional engineering, with its practices, has not
proved effective in the production of software as with other industrial
products. The best methodology used in last years is the Agile software
development. We can say that the traditional software development
processes are not able to deal effectively with the two main questions
concerning cost and time. The literal meaning of the word agile is
"characterized by rapidity, lightness and ease of movement”. This
therefore means that the agile development process consists of a rapid
delivery of software characterized by greater ease and flexibility of
development. Using a more classical definition, we could say that: "Agile
is a development process that emphasizes customer satisfaction
through the continuous supply of working software”. The life cycle of
Agile development is divided in: iteration 0, where project is initiated;
Development iterations; Release; Production. [1]

�5

The main investment done by companies that produce software is
during the fase of Development iterations. The goal of this work is
focused on helping to reduce the gap between designers and
programmers. The main aspect was to create a collaborative tool that
tried to bring together as many features as possible, also using external
tools (such as Github): for designers was examined the theme of
software sustainability to help him to manage architectural design
decision in efficiently way (as done by Trello and Asana) based on
Kanban software development. Instead for programmers was united the
force of versioning and continuous integration and continuous
deployment to increase the quality of developing phase.

�6

Software sustainability

“Architects must sustain architectural design decisions to endure
throughout software evolution. Several criteria can help them assess
architectural design decisions’ sustainability.”

THE EFFORT AND COSTS required to maintain complex software
systems are often high, involving continuous refactoring to ensure
longevity in the face of changing requirements. Here, we introduce the
concept of architecture knowledge (AK) sustainability to help architects
deal with the evolution of long-lived systems. We suggest that AK
sustainability is a function of the stability of design decisions, and we
propose criteria and metrics to help estimate it.

What is Architectural Sustainability?
One of the success criteria for the architecture of a long-lived system is
how well it survives the test of time in terms of supporting changes
during the life cycle of the system while remaining intact. Many
application domains, from complex engineering disciplines like
automotive or avionics to information systems among others, demand

�7

stable architectures that are based on good, well-understood design
decisions that extend the longevity of those architectures. However, in
many situations software architects and developers struggle to cope
with the impact of unpredictable changes (e.g., changes in technology
platforms or surprising changes in the organization's business) that
need extensive refactoring to implement them. We believe that this is
often because architectural sustainability is not considered during the
system design.

A system’s longevity affects its sustainability—these two factors are
essentially two sides of the same software quality problem. Architectural
sustainability can be achieved through good design decisions that
retain their validity and influence over the long term. So, we define
architectural sustainability as the set of factors that promote an
architecture’s stability and longevity during system evolution. Capturing
architecturally good design decisions can provide a basis for assessing
their stability over time if changes in the decisions don’t affect the
resulting architecture’s core. Consequently, architects should ask these
key questions:

• When is an architecture considered sustainable?
• When is a design decision considered stable? What’s a decision’s

ideal lifetime?
• How can we measure AK sustainability?

Given the number of long-lived systems in all domains today, these
questions are relevant to software architects who want to raise or
measure their architectures’ quality, longevity, and stability.

�8

Sustainable architectures  

Estimating the sustainability of an architecture might not be easy, and
we need to detect and identify “architecture smells”, showing that
something is wrong or no longer adequate in the architecture. These
smells often arise as consequence of architecture-related technical debt

(TD), architectural mismatch or problems with the design decisions that
have been made. Such loss of quality in the architecture usually affects
the overall quality of the system, too; hence, we need metrics to
estimate the ongoing quality of an architecture so that we can see when
it starts to decay.

Another factor that clearly affects the architecture sustainability is how
the evolution of the system is managed. In order to keep technical debt
at acceptable levels, compensating technical changes must constantly
be performed to repay the debt; otherwise, it will get out of control. We
have found that there are a number of different categories of metrics that
can be used to estimate the impact of changes on an architecture,
which act as indicators of its sustainability:

• ripple effect metrics used to understand to what extent a change in
a design decision affects other decisions (the higher the ripple
effect, the poorer the architecture sustainability);  

• instability, as opposed to stability, computed based on theory, as
the probability of an architecture to change, while change
proneness is computed empirically, and measures the effect of
changes in architecture elements. Predicting instability or when a
software module could change in a future version can be
estimated as a probability function based on past changes and the
percentage of ripple effects propagated from other modules;  

�9

• code metrics used to detect anti-patterns in the architecture that
consequently might lead to architecture changes. For instance,
code metrics can provide indicators about complexity like coupling
and cohesion and enable detecting, for instance, god classes that
are clear signs of the Blob anti-pattern.  

Long-Lived decisions

The sustainability of architectural knowledge can be achieved more
easily if the knowledge is explicitly documented. Ideally this would be
through the use of formally documented decision models, where the key
design decisions could be captured and stored to be shared or even
reused in new software projects. While formal models are rarely seen in
industry, more lightweight, informal documentation can be used instead
(e.g., capturing architectural knowledge in textual form perhaps using a
template for guidance). Our experience leads us to strongly believe that
the number of design decisions that have to be maintained (and the
effort to maintain them) is a key indicator of the likely level of
architecture sustainability of a system. This is primarily because the
process of modifying a decision is not an isolated action and often
influences other related decisions.  

As a result on our experience in this area, we base our assessment of
the sustainability of an architecture on the following factors:

• the number of refactoring and frequency of changes performed
over a period of time;  

• the amount of significant design decisions changed;  

�10

• the adequacy of the trace links between design decisions and
other software artifacts that eases tracking when decisions are
changed.  
 
Good design decisions usually endure over a long period of time
and enable the architecture to remain stable. Regarding the
lifetime of good design decisions, these must be revisited in case
of large architectural changes, but should not be constantly
changed, as the system evolves. If we use appropriate metrics to
monitor the size of the decision network, the number of changes to
the decisions during evolution cycles, and the impact of
refactoring, we can better estimate the extent to which an
architecture can be considered to be sustainable. Therefore, the
longevity of decisions is an indicator as to whether the architecture
of a system is stable. Many contemporary decision model
implementations contain a timestamp and a decision history to
record when decisions are modified, which allows users to know
the last time a decision changed. This is also useful when
calculating metrics like the ones listed above and ones relating to
the frequency of change.  

Figure A shows the factors affecting architectural sustainability and
longevity. These factors— derived from the complexity of a decision
network or the stability of decisions—indicate TD; we use them to
identify the loss of architectural quality and thus design erosion.

The bottom box in the figure shows metrics and items that can be
combined to estimate AK sustainability. [2]

�11

Figure A - Architecture smells derived from metrics to estimate the
sustainability of architecture knowledge.

�12

Kanban software development

The Japanese word kanban refers to a signboard. When the term is
used in manufacturing, it means a scheduling system that hints what,
when, and how much to produce.

Figure B - An example of one implementation of the Kanban board used
in a software development project.

It is claimed that Kanban is one of the important elements that executes
Lean thinking in practice. Kanban is also one of the key operation
management tools in Lean manufacturing. It drives project teams to
visualize the workflow, limit work in progress (WIP) at each workflow
stage, and measure the cycle time (i.e., average time to complete one
task).

Despite the demand to visualize the workflow, there are no particular
rules concerning how to implement the content of the Kanban board. In
their basic form in production environments, Kanban controls are
typically implemented with physical index cards (usually called tickets)
moving along with the material. The cards then act as the flow-control
tickets between the different work stations or processes. Figure
B illustrates one realization of Kanban as a table (such as a wallpaper
with sticky notes). Each project task (card) flows from one state to

�13

another (from left to right) as it progresses. Hence, the overall project
situation can be seen at a glance while the dynamic moving of the task
cards indicates the project progress (or blocking) over time.

Benefits of Kanban scheduling are reduced inventory (simultaneous
WIP), improved flow, prevented overproduction, operations-level control,
visualized schedule and management of the process, improved
responsiveness to changes in demand, minimized risks of inventory
obsolescence, and increased ability to manage the supply change. As a
result, Kanban attempts to lower production costs, increase quality, and
accelerate cycle time. Meanwhile, inventories and problems caused by
sudden changes will become more apparent.

However, while Kanban attempts to clarify workers' awareness of the
current production issues and forthcoming tasks, it does not
recommend any particular project phases, milestones, or partitioning
tasks. Due to this liberty, it is up to a project team to build and customize
the appropriate practices for its project. Some such practices have
been suggested in the literature. Ladas, for example, suggests that the
amount of tasks in progress simultaneously should be adjusted to the
reasonable capacity in use. Middleton claims that this amount should be
minimized in order to keep quality high. Shinkle, instead, argues that
minimizing this amount is not the best solution.

Project flow stages wherein the tasks progress from stage to stage have
been suggested as well. If each stage, such as to do, design,
and coding, gets its own “ready” stage, the blockages in the workflow
become more visible. State that tasks should be prioritized. Moreover,
laborious tasks should be partitioned before setting them as assigned.

�14

Table A - Nine aspects of Kanban development.

While the operations management field has investigated Kanban-based
production for years, not much empirical evidence has been published
in software development. It follows that the presumed advantages and
suggested control rules, such as WIP sizes, remain largely anecdotal
and not necessarily generally applicable.
Figure B demonstrates the meaning of WIPs. In the “Code Review”
column, the WIP number has been set at two. This limit means that no
more than two tickets are allowed to be in the column simultaneously. If
a task being code reviewed were problematic, carrying it out without the
assistance of others would restrain the flow. Other people, once they
have finished their tasks, cannot put another ticket into the column
because it is already full (due to the WIP limit). They rather have to help
with the problematic ticket in order to free some space in the column for
new tickets. In this way, the flow is supposed to be smooth and
bottlenecks avoidable. [12]

Aspect of
Work Expected Influences of Kanban

Documentation Only if the customer needs and favors it

Problem solving Unexpected problems are found quickly on the Kanban
board; they are thus tackled immediately

Visualization The work is visualized on the Kanban board

Understanding
the whole

One of the Lean key principles; Kanban does not offer
tools though

Communication Rapid and plenty

Embracing the
method

An intuitive method (e.g., visualization)

Feedback Rapid and plenty; Supports also regular meetings with
the customer

Approval
process

Best expertise is at each workstation or developer; no
complex approval processes

Selecting work
assignments

Developers select and pull their work voluntary and
individually

�15

Git systems

Git is a distributed version-control system for tracking changes
in source code during software development. It is designed for
coordinating work among programmers, but it can be used to track
changes in any set of files. Its goals include speed, data integrity, and
support for distributed, non-linear workflows.
As with most other distributed version-control systems, and unlike
most client–server systems, every Git directory on every computer is a
full-fledged repository with complete history and full version-tracking
abilities, independent of network access or a central server.
Git is free and open-source software distributed under the terms of
the GNU General Public License version 2.

Branching and merging

The Git feature that really makes it stand apart from nearly every other
SCM out there is its branching model.
Git allows and encourages you to have multiple local branches that can
be entirely independent of each other. The creation, merging, and
deletion of those lines of development takes seconds.
This means that you can do things like:
• Frictionless Context Switching. Create a branch to try out an

idea, commit a few times, switch back to where you branched
from, apply a patch, switch back to where you are experimenting,
and merge it in.

• Role-Based Code-lines. Have a branch that always contains only
what goes to production, another that you merge work into for
testing, and several smaller ones for day to day work.

• Feature Based Workflow. Create new branches for each new
feature you're working on so you can seamlessly switch back and

�16

forth between them, then delete each branch when that feature
gets merged into your main line.

• Disposable Experimentation. Create a branch to experiment in,
realize it's not going to work, and just delete it - abandoning the
work—with nobody else ever seeing it (even if you've pushed
other branches in the meantime).

Notably, when you push to a remote repository, you do not have to push
all of your branches. You can choose to share just one of your branches,
a few of them, or all of them. This tends to free people to try new ideas
without worrying about having to plan how and when they are going to
merge it in or share it with others.
There are ways to accomplish some of this with other systems, but the
work involved is much more difficult and error-prone. Git makes this
process incredibly easy and it changes the way most developers work
when they learn it.

�17

Small and fast

Git is fast. With Git, nearly all operations are performed locally, giving it
a huge speed advantage on centralized systems that constantly have to
communicate with a server somewhere.
Git was built to work on the Linux kernel, meaning that it has had to
effectively handle large repositories from day one. Git is written in C,
reducing the overhead of runtimes associated with higher-level
languages. Speed and performance has been a primary design goal of
the Git from the start.

Let's see how common operations stack up against Subversion, a
common centralized version control system that is similar to CVS or
Perforce. Smaller is faster.

For testing, large AWS instances were set up in the same availability
zone. Git and SVN were installed on both machines, the Ruby repository
was copied to both Git and SVN servers, and common operations were
performed on both.

!

!!!

!!!

!!
!

!!

�18

In some cases the commands don't match up exactly. Here, matching
on the lowest common denominator was attempted. For example, the
'commit' tests also include the time to push for Git, though most of the
time you would not actually be pushing to the server immediately after a
commit where the two commands cannot be separated in SVN.

All of these times are in seconds.

Note that this is the best case scenario for SVN - a server with no load
with an 80MB/s bandwidth connection to the client machine. Nearly all
of these times would be even worse for SVN if that connection was
slower, while many of the Git times would not be affected.

Operation Git SVN
Commit Files
(A)

Add, commit and push 113 modified
files (2164+, 2259-)

0.
64

2.6
0 4x

Commit Images
(B)

Add, commit and push 1000 1k
images

1.
53

24.
70

16
x

Diff Current Diff 187 changed files (1664+,
4859-) against last commit

0.
25

1.0
9 4x

Diff Recent Diff against 4 commits back (269
changed/3609+,6898-)

0.
25

3.9
9

16
x

Diff Tags Diff two tags against each other
(v1.9.1.0/v1.9.3.0)

1.
17

83.
57

71
x

Log (50) Log of the last 50 commits (19k of
output)

0.
01

0.3
8

31
x

Log (All) Log of all commits (26,056 commits
- 9.4M of output)

0.
52

169
.20

32
5x

Log (File) Log of the history of a single file
(array.c - 483 revs)

0.
60

82.
84

13
8x

Update Pull of Commit A scenario (113 files
changed, 2164+, 2259-)

0.
90

2.8
2 3x

Blame Line annotation of a single file
(array.c)

1.
91

3.0
4 1x

�19

Clearly, in many of these common version control operations, Git is one
or two orders of magnitude faster than SVN, even under ideal
conditions for SVN.

One place where Git is slower is in the initial clone operation. Here, Git
is downloading the entire history rather than only the latest version. As
seen in the above charts, it's not considerably slower for an operation
that is only performed once.

It's also interesting to note that the size of the data on the client side is
very similar even though Git also has every version of every file for the
entire history of the project. This illustrates how efficient it is at
compressing and storing data on the client side. [3]

Operation Git* Git SVN

Clone Clone and shallow clone(*) in Git vs
checkout in SVN

21
.0

107
.5

14.
0

Size (M) Size of total client side data and files
after clone/checkout (in M)

181
.0

132
.0

�20

Continuous software engineering

Continuous software engineering is an emerging area of research
and practice. It refers to develop, deploy and get quick feedback from
software and customer in a very rapid cycle. Continuous software
engineering involves three phases: Business Strategy and Planning,
Development and Operations. This study focuses on only three software
development activities: continuous integration, continuous delivery and
continuous deployment. Figure 1 shows the relationship between these
concepts.

Figure 1 - The relationship between continuous integration, delivery and
deployment.

�21

Continuos Integration

In the area of modern client-side web development, there are lots of
communities and organizations which have offered JavaScript
frameworks and plugins on the internet. Those frameworks and plugins
have many useful modules and functionalities that help to speed up the
development process, yet user’ requirements still keep changing over
time (e.g. better interactivity, better performance or better security).
These points are constantly increasing the complexity of application
development. This is a reason why developers have to rely on more than
one framework or a plugin within an application which of course often
leads to conflicts or even defects. Usually, defects are caught during the
integration process and it is very hard to fix them quickly because web
applications need to be tested on many different environments including
multiple operating systems and even more browsers.
The issues described above are demanding a proper solution, because
unexpected and unforeseeable problems might affect project deadlines.
This might result in unsolvable bugs for more complex applications. To
improve this situation and enhance development quality and efficiency,
Continuous Integration (CI) is a very promising approach to apply.
Hence, to reduce the number of defects during the integration process,
some managing processes are required to work automatically.

Continuous Integration (CI) is a software practice that requires software
to be integrated in a shared repository up to several times a day. Each
integration is verified by an automated build, which includes testing to
detect integration errors as quickly as possible. The first step in a CI
Process is developers committing their code to a Version Control
Systems (VCS). A CI server detects changes in the repository (e.g. by
polling every few minutes). When a change is detected the project is
pulled into the CI server itself. This will trigger a build process which

�22

builds the software. Then the built-result report will be generated by CI
server and sent to project manager (or members).
The CI server continues to check for further changes and repeat this
cycle. The goal is to convert from manual integration to automated
integration. Yet, common CI is just a basic concept which still needs to
be customized in order to smoothly adapt with modern client-side web
application's testing systems.

Overview and detail CI process

A. Overview CI Process

Figure 2 presents the system overview and the components of our
proposed CI process that are involved in the whole CI development. The
main actors are: developers, a Version Control System (VCS), an on
demand cloud testing service, and a testing server. The process is
consistent with the common CI approach, yet there are some specific
tasks that might work differently. For example, in the CI server program
contains four mandatory processes which need to be run sequentially.
The four processes are: “Test before build”, “Build”, “Test after Build”,
and “Deploy”. And, the “Test after Build” is selected to perform all tests
on a Cloud Service.

�23

Figure 2 - CI components in modern client-side web application.

B. Detail CI Process

1) Development and Manual Testing
Local development is an important part in the CI approach. Every new
commit from a local development is a key signal which triggers the CI
server to execute its automation processes (i.e. test, build, and etc.). A
well-defined and executed local development helps CI approach to
work effectively. The developers need to be aware of the basic practical
flow during their development.
This process starts with developers checking out the project from VCS,
so that they can work on the assigned tasks. The specific tasks of
developers consist of maintaining source code and tests (unit test and
functional test). Unit tests are simply used to verify the behavior of single
elements (or units) in a software system. Those are, most of the time,
single methods (functions) or classes. It is a type of test which works by
executing a piece of code directly and expecting a specific result. On
the other hand, Functional tests work by issuing the commands to a
device/browser that mimic actual user interaction. Functional tests do
not always call other APIs directly; hence mockup data needs to be
provided to test such behavior.
Every day, developers also perform manual tests on their local machine
in order to make sure that all tests are passed and the source code work
correctly. Then at the end of this cycle developers commit their source
code and tests to the VCS.

2) Automated Process on a CI Server
Setting up CI server can be done by manual or using its tool like
CruiseControl or CruiseControl.NET. Due to the fact that web
application's behavior works different from other applications written by
java, ruby or. net, we decided to set up CI server by ourselves. These CI
server are responsible for the four mandatory automated processes.

�24

Hence, this server will automatically check new commit from VCS
according to our pre-defined period of time, and once a change is
detected, the processes will be executed as consequence.

a) Test Before Build
The aim of “Test before Build” is to catch the errors as soon as a new
commit is made. Fortunately, with modern web applications we do not
need to compile our code before running it. It means browsers act as
the platform to interpret JavaScript code. So, if any test fails after
running in the browsers, the project is fragged, indicating to the
developers that it contains errors.
We know that the CI server is running on a predefined time-based
trigger. When the trigger goes off, the CI program checks-out the project
from the VCS. After that, the program CI determines if there is a new
commit? If so, the CI server will automatically run “Test before Build”
script, otherwise it will do nothing in this cycle. The “Test before Build”
script will invoke browsers (local browsers which are installed in CI
server) and perform all tests. When it finishes, it will summarize the
result. Then, the CI program will determine if the result contains errors. If
so, the program will send an email to notify the project manager (or a
team member) with a log file. Otherwise, the CI program ends this
process and the CI server will wait for the next trigger event. The Figure
3 shows the process of the CI program.

Figure 3 - CI program on “test before build” process.

�25

b) Build
Usually, the word “build” in software development landscape is used for
compiling from source code to machine code. However in web
application development, it means source code minification and source
code obfuscation. Minification is a process of combining multiple project
files into few combined files then removing all unnecessary characters
or dead-code without changing its functionality. Notwithstanding, the
obfuscation process is used to hide the actual code intention. So that,
the process will rename variable and function names to meaningless
names, and remove all extra white space and line breaks.
The build process is performed automatically on the CI server, after a
successful “Test before Build”. Then after the build process finishes, the
CI program finds the error in log file. If there is any error, the program will
send an email to the project manager with log file. Otherwise, the CI
program ends the build process and the CI server will wait for the next
trigger event.

c) Test After Build
Normally, a web application might run after the build process is finished,
but it does not mean it does all right thing. In a real practice, the errors
might encounter. Therefore, performing automated test is the best way
to detect and announce the errors quickly. And this process is named
“Test after Build” and it will be executed after the previous build process
is done without any errors.
The “Test after Build” process is worked with external platform. It means
all tests will be run on a cloud-based service. The cloud-based service
allow us to perform the tests on a number of different environments, i.e.
operating systems, browsers, system resources, and etc., which are not
existed on our local. This is very helpful because performing tests on a
local machine is very costly to include many environments.
Recently, using cloud services has become common in the software
development. The testing process is controlled by the CI server. The CI

�26

server opens the connection to the cloud-based service. Then, it sends
following commands to the cloud service: authentication, initialize the
operating systems with the corresponding browsers that we want to run
our tests. The cloud-based service listens to the commands and works
accordingly. Once it finishes it will send the result back to the CI server,
and then the result will be saved in a log file. The whole process can be
easily illustrated in the Figure 4.

Figure 4 - Simple cloud-based process.

d) Deploy
Deploying a web application on a test server ensures that the
application can be manually tested. Since the programmers deploy
multiple times during the development process, it is preferred to
automate this job. As a consequence, the deploying process will be
started once the “Test after Build” process finishes without any defects.
The process is such a good approach for testers (QA, other developers,
project manager, and etc). They could perform manual testing on the
latest version of the application as fast as the whole CI cycle is done.
Especially, with modern client-side web applications, this can be easily
done by copying all your project files to web directory of the test server.
After the automated deployment process is finished, we successfully
completed CI cycle and the next cycle will start by the time trigger. [4]

�27

Continuous Deployment

With increasing competition in software market, organizations pay
significant attention and allocate resources to develop and deliver high-
quality software at much accelerated pace. Continuous Integration (CI),
Continuous DElivery (CDE), and Continuous Deployment (CD), called
continuous practices for this study, are some of the practices aimed at
helping organizations to accelerate their development and delivery of
software features without compromising quality. Whilst CI advocates
integrating work-in-progress multiple times per day, CDE and CD are
about ability to quickly and reliably release values to customers by
bringing automation support as much as possible.
Continuous practices are expected to provide several benefits such as:
(1) getting more and quick feedback from the software development
process and customers; (2) having frequent and reliable releases, which
lead to improved customer satisfaction and product quality; (3) through
CD, the connection between development and operations teams is
strengthened and manual tasks can be eliminated. A growing number of
industrial cases indicate that the continuous practices are making
inroad in software development industrial practices across various
domains and sizes of organizations. At the same time, adopting
continuous practices is not a trivial task since organizational processes,
practices, and tool may not be ready to support the highly complex and
challenging nature of these practices.
Due to the growing importance of continuous practices, an increasing
amount of literature describing approaches, tools, practices, and
challenges has been published through diverse venues. An evidence
for this trend is the existence of five secondary studies on CI, rapid
release, CDE and CD. These practices are highly correlated and
intertwined, in which distinguishing these practices are sometimes hard
and their meanings highly depends on how a given organization
interprets and employs them. Whilst CI is considered the first step
towards adopting CDE practice, truly implementing CDE practice is

�28

necessary to support automatically and continuously deploying software
to production or customer environments (i.e., CD practice). There was
no dedicated effort to systematically analyze and rigorously synthesize
the literature on continuous practices in an integrated manner. By
integrated manner we mean simultaneously investigating approaches,
tools, challenges, and practices of CI, CDE, and CD, which aims to
explore and understand the relationship between them and what steps
should be followed to successfully and smoothly move from one
practice to another.

Continuous Integration (CI) is a widely established development
practice in software development industry, in which members of a team
integrate and merge development work (e.g., code) frequently, for
example multiple times per day. CI enables software companies to have
shorter and frequent release cycle, improve software quality, and
increase their teams’ productivity. This practice includes automated
software building and testing.

Continuous DElivery (CDE) is aimed at ensuring an application is
always at production-ready state after successfully passing automated
tests and quality checks. CDE employs a set of practices e.g., CI, and
deployment automation to deliver software automatically to a
production-like environment. This practice offers several benefits such
as reduced deployment risk, lower costs and getting user feedback
faster. Figure 1 indicates that having continuous delivery practice
requires continuous integration practice.

Continuous Deployment (CD) practice goes a step further and
automatically and continuously deploys the application to production or
customer environments. There is robust debate in academic and
industrial circles about defining and distinguishing between continuous
deployment and continuous delivery. What differentiates continuous
deployment from continuous delivery is a production environment (i.e.,

�29

actual customers): the goal of continuous deployment practice is to
automatically and steadily deploy every change into the production
environment. It is important to note that CD practice implies CDE
practice but the converse is not true. Whilst the final deployment in CDE
is a manual step, there should be no manual steps in CD, in which as
soon as developers commit a change, the change is deployed to
production through a deployment pipeline. CDE practice is a pull-based
approach for which a business decides what and when to deploy; CD
practice is a push-based approach. In other words, the scope of CDE
does not include frequent and automated release, and CD is
consequently a continuation of CDE. Whilst CDE practice can be
applied for all types of systems and organizations, CD practice may
only be suitable for certain types of organizations or systems. [5]

�30

II. Software developed
The developed software tries to combine all these issues described to
help companies that produce software, keeping track of everything that
happens within each development team, from solving a small bug to a
total recreation of the project.

A web-application was made:

• Front-end: Bootstrap [6] for the User Interface (html5, css3), with a
small customization of the basic components; for the dynamism of the
site it was consequently used javascript with jQuery framework [7],
especially for APIs calls to the server through Ajax.

• Back end: the infrastructure is active on an apache server [8], using
PHP&MySQL. The framework used to create endpoints and interact
with the client is Slim3 [9] (PHP micro-framework).

The choice to use this type of infrastructure was born from the need to
try to combine speed of use by the teams and computing power that did
not depend on the devices with which it was accessed, but the whole
depends on the power of a single server that manages everything .
Another basic reason is that being a collaborative software, a structure
like a web application has no comparisons with other types of types.
Once this infrastructure has been terminated, it will be possible to create
any type of application (mobile, desktop) able to connect to the central
server in order to allow expanding the functions currently offered and
described below.

�31

Functionalities

Home page

Figure 5 - Home page

The home page (fig. 5) of the software is presented with the list of
projects in which one participates (created or invited). A color pattern
has been defined relative to the role the user has within each project:
white for the role of ADMIN, green for the role of DESIGNER and blue for
the role of CODER.

The difference in these roles consists of:

• ADMIN: being the creator, he has the possibility to do everything
related to the project functions (which we will see later) and can invite
users to collaborate on the project, defining their roles.

• DESIGNER: this is the most "significant" role since it represents the
users who define the architectural part of the project, have the
possibility to create, delete and modify the design decisions of the
project (technologies to be used, distributed system, etc.).

�32

• CODER: this role is related to programmers, those who write code
related to every decision taken by the DESIGNERs.

This last role was included in the first version of the software, because
initially it was not thought to use an existing git system (Github) but it
was thought to create a new one, resident within the production server,
giving the possibility to write code in the software, using an editor
(Ace.js). Since it would have been a superfluous job, to create a git
system from scratch, in the second version this role was eliminated,
leaving space for ADMINs and DESIGNERs that will keep the
developments of the CODERs under control directly within the screen of
the individual decisions using, as we will see, the APIs of Github.

Creation of project

Figure 6 - Project creation

Clicking on "Create new project" (fig. 5), a modal will open (fig. 6) where
the project data is requested: name, Github repository endpoint where
the project is present, and if this is private you must also enter the

�33

GitHub access token, requested by the project administrator on the
GitHub platform.

Project page

Figure 7 - Project page

Created the project, clicking on it will enter the project page. The two
main sections are DOING and DONE, which reflect the project
management board used in Scrum Development [10].

The actions that can be carried out by the buttons in fig. 7 are:

1. Create new decision

2. Invite user

3. Users in project

4. Delete project

�34

1 2

3 4

CREATE NEW DECISION

Figure 8 - Insert new decision

In this section it is possible to add all the information necessary to best
describe the architectural decisions taken by the DESIGNERS. After a
long study on Software Sustainability, we chose to use only two textual
fields. The third field is related to the possibility of adding a File to be
attached to the decision (ex. UML file, PDF, etc.) that can help in sharing
ideas.

The Measuring Sustainability of Architectural Knowledge is explained
below:

“The sustainability of architectural knowledge can not only be estimated
in terms of how much effort we need to maintain the knowledge, but also
how stable the decisions are and their longevity as the system evolves.
Software maintainers can use this table as a guide to evaluate the
sustainability of their architecture. It is important to both assess the
values of the metrics at a specific point in and also to track trends in
their values over time. We use the metrics in this table to measure the
sustainability of the architectural knowledge and provide sustainability
indicators for an architecture.

�35

Table 1 - Assessment criteria to measure architectural knowledge
sustainability.

Table 1 suggests a set of metrics that software engineers can use to
estimate the sustainability of architectural knowledge. We can combine
several metrics to estimate a particular quality attribute. For instance,
estimating the complexity of a decision network involves combining the
“NodeCount”, “EdgeCount”, and “NumberOfChildren” metrics to
estimate how complex, and hence how sustainable, the decision
network is as it evolves. In those cases where we need to decrease the
cost of the decisions captured and make the architectural knowledge
capture more sustainable, the “NumberOfFields” indicator, combined
with the number of decisions captured and the time spent in capturing
them, serve as indicators to measure the ideal size of a decision model
in different development contexts (e.g., agile versus RUP).” [2]

�36

INVITE USER

In this section it is possible (for ADMINs) to invite users through their
@username and assign them a role: ADMINs or DESIGNERs.
Once invited, the selected user will see in his Home page (fig. 5) the
new project with the color relative to the role assigned by the ADMIN
who invited him.

USERS IN PROJECT

Figure 9 - Users in project view

Through this section it is possible to see the users who are collaborating
in the project, their roles and their activity.
If you are an ADMIN of the project, the red X next to each name will be
visible to have the possibility to exclude that user from the project.

DELETE PROJECT

The Delete functionality will be visible in all sections of the software, with
the same interface, ie a modal that asks you if you are sure you want to
delete that element.

�37

Design decision page

Figure 10 - Design decision page

After all the architectural decisions of the project have been created, it
will be possible to analyze them one by one by clicking on them in the
project page (fig. 7). This is the main section of all the software.

On this page you can check and view all the work done on a specific
architectural decision. It is divided mainly into two sections: changes
manually written by DESIGNERs and a list of COMMITs taken directly
from the Github repository (initially linked when the project was created).

The following features can be highlighted:

1. Insert new change

2. Changes timeline view

3. Github commits view

4. Complete changelog

�38

5

2

4 6

1
3

5. Decision completed

6. Delete decision

INSERT NEW CHANGE

Figure 11 - Insert new change in selected decision

This function has been inserted because in addition to the commits, it
could become necessary to insert notes that you want to take as you
develop a certain decision. The information that can be collected for
each change is: description of the work done, effort (currently not in use
since as explained in the section "Create new decision" you are not yet
able to define an effort for the work done, you could trivially use time),
important flags and files for any attachments.
The Important flag is used to decide whether the change entered should
be highlighted when opening the decision page or it is something that
could take second place: if checked, we will see the change in the
timeline of the decision page (fig. 10, section (2)); otherwise we can
review it in the Complete changelog section (fig.10, section (4)).

�39

CHANGES TIMELINE VIEW

The timeline of the changes needed to bring out, just open the page, the
important changes within the decision (ex. Update framework from
Slim2 to Slim3).
It is characterized by a menu, in which you can choose to change or
delete the change, from a tag that shows who created that change and
the date of the operation.

GITHUB COMMITS VIEW

This view serves to show the progress of the CODERs work in relation to
the decision you are browsing.

- How can you view certain commits from the same repository?

Thanks to the Github APIs [11] it is possible to return all the repository
commits:
GET /repos/:owner/:repo/commits

Commits are filtered based on the name of the decision. When CODERs
push into the project, based on the decision they are working on, they
will have to write the name of the decision as the first word/phrase
and then describe what has been done, so everything can be filtered
and displayed correctly for each decision.

COMPLETE CHANGELOG

�40

This view is used to list all the changes that have not been marked as
Important at the time of insertion, as they could be considered not so
fundamental to be seen on the home page but it could be useful to keep
track of them. The green ones are the important ones, the others not.

DECISION COMPLETED

When the decision is completed, simply click on "Decision
completed" (fig. 10, section (5)) to move it to the DONE section on the
project's home page. If you enter into a completed decision, the button
changes to "Re-open decision" and if you click moves back into DOING
them.

DELETE DECISION

Useful function to delete a decision and all related changes.

�41

Code: main artifacts

The project is dived in two sides: client and server. These sides work in
two separated virtual host, running on Apache server, installed in a
Ubuntu machine.

SERVER

Server side is built with Slim3, PHP micro-framework. Thank to this
framework it was possible realize a simple REST APIs structure for the
software.

Example

/**
 * Route: /project
 * Methods: GET, POST, PUT, DELETE, OPTIONS
 */
$app->map(['GET', 'POST', 'PUT', 'DELETE', 'OPTIONS'], '/project[/{id}]', function (Request $request, Response $response,
array $args) {
 $handler = new \handler\COE\HandlerProject($this);
 $method = $request->getMethod();
 if (isset($args['id'])) {
 $handler->setId($args['id']*1);
 }
 $handlerLogin = new \handler\COE\HandlerLogin($this);
 $user = $this->has('user') ? $this->get('user') : null;
 try {
 switch ($method) {
 case "GET": {
 return $response->withJson($handler->getResultInArray());
 }
 case "PUT": {
 $handler->setValuesInArray($request->getParsedBody());
 return $response->withJson($handler->getResultInArray());
 }
 case "DELETE": {
 if ($handlerLogin->verifyUserIsAdmin($user->id, $args['id']) * 1 == 1) {
 return $response->withJson($handler->deleteValueProject());
 } else {
 return $response->withJson("Unauthorized", 401);
 }
 }
 }
 } catch (Exception $e) {
 return $response->withJson("Unauthorized", 401);
 }
});

�42

APIs Routes Handler
Class Object

CORS
Middleware

Auth
Middleware

(JWT)

Before an example of API for Project entity. It was used PSR-7 for HTTP
message interfaces.
API Route: …/project[{id}]
with GET, POST, PUT, DELETE, OPTION available methods.

The syntax of route is called Backus–Naur form or Backus normal
form (BNF) that is a notation technique for context-free grammars.
Analyzing in detail the route it’s possible to see the ":id", it's in [], that
mean “If it is present something after the ‘/‘, it will be call :id”. So with
this syntax it’s possible vary the function in one single route name.

When this API is called, based on the METHOD, it calls different
function, in particular for the project entity:
• GET: get information for the project selected, because is called with

the :id parameters, and retrive the detail for project
• PUT: insert new project in the DB (without insert :id manually)
• DELETE: delete an selected project with :id parameter
Some method required specific authorization to be executed, in-fact
before the main function call, it’s present a function “verifyUserIsAdmin”
that given the JWT, with some information about the user that have done
the call, it check in the DB if his role (of the project selected) is an admin
or not.

CLIENT

The UI was built in html5, css3 (bootstrap) and javascript (jQuery).

The design pattern used for the client was Model View Presenter (MVP).

�43

PRESENTER

(js class)

VIEW

(html, css, js)

MODEL

(js class)

Model View Presenter (MVP)

Model-View-Presenter (MVP) is an architecture pattern for the
presentation layer of software applications. The pattern was originally
developed at Taligent in 1990s and first was implemented in C++ and
Java.

In MVP, the View and the Model are neatly separated and the View
exposes a contract through which the Presenter access the portion of
View that is dependent on the rest of the system.

The Model is the component which preserves data, state and business
logic; it just exposes a group of service interfaces to Presenter and
hides the internal details.

The View is the user interface, it receives user's action and contract to
Presenter to achieve user's need, and then the View responds user by
result information.

The Presenter sits in between the View and the Model; it receives input
from the View and passes commands down to the Model. It then gets
result and updates the View trough the contracted View interface.
“Fig. 12” illustrates the parts of MVP pattern and how they interact with
each other.

Since the MVP pattern was put up in 1990s, it has been widely
discussed in the area of software engineering; Martin Fowler reported
some methods of implementing MVP at his papers and books. However,
few wittier have considered how to implement it on concrete program;
this process is extremely dependent on experience of developers.

�44

Figure 12 - MVP pattern 

Contrast to traditional presentation layer, the advantage of presentation
layer with MVP pattern is based on tree facts:

• The View doesn't know the Model. Because of this, there is a low
coupling between Model and View. It means that if Model or View
was changed, another part not needs to modify as long as
interfaces are stable. This also stands for the flexibility of
architecture and the reusability of business logic in Model.  

• The Presenter ignores any UI technology behind the View.
According to this, the replacement of UI technology, such as
transfer Windows Forms to WPF or to Web Forms, is not need any
change of other parts. Even one application could have more than
one UI technologies but one Model so that the C/S deployment
and the B/S deployment are supported by it at the same time.  

• The View is mockable for testing purposes. In tradition, it is
impossible to test View or business logic component before
another has completed because of the tight coupling between
View and business logic. By the same token, the unit testing for
View or business logic component is difficult. All of those problems
are solved by MVP pattern. In MVP, there is no direct dependency
between View and Model. For that reason, developer could use
mock object to inject into View or Model so that they can be tested

�45

on one's own. 

THE ARCHITECTURE MODEL

As a pattern, MVP has various expressive forms and architectures when
implementing in different platforms, the concrete implement is restrained
by the features of platform, and consistency is another factor which
should be considered when designing the concrete architecture model.
Based on the above, an architecture model of implementing MVP
pattern on. NET which is illustrated by “Fig. 13” is given here. This
architecture model not only takes advantage of many specific
characters of OOAD, practical experience also proves that this is
workable and well-behaved.
This model is made up by five parts:
IView is the abstraction of View that is composed of a set of rules that
declare what data and functions should be implemented in View.
Generally every View component has its own IView component.

Figure 13 - The architecture model of MVP on .NET

�46

View is the part which interacts with users. There are many technologies
could be used to implement the View on. NET platform, such as
Windows Forms, Web Forms, Silverlight, WPF and so on. Every View
component should implement the homologous IView and one IView
component could has many implements with different UI technologies,
as a result the Views implemented from the same IView could take the
place of each other.

IServices is a set of interfaces that define the functions should be
implemented by business logic components. It is correspond to
interface of The Model.

Services are the business logic components that implements IServices.
View and Presenter need the help of Services to do application business
on account of they do not have any business logic. Services having
nothing to do UI technology commonly, the concrete implement of them
are some general classes. Sometimes Services need a Repository to
deal with the operation of database, this is out of this paper's range.

Presenter is the core of MVP pattern. On. NET platform presenter is a
number of classes that dependent on IView and IServices. Just like the
Services, Presenter is foreign to UI technology because it just
dependent to IView. Presenter receives user actions and read input data
from view, and then it invokes functions in Services to complete the
business logic and modifies View's state. This entire works are called
presentation logic.

“Fig. 14” is the sequence diagram that shows how MVP pattern works.

�47

Figure 14. Sequence diagram of MVP pattern

�48

Benchmarking

Trello

Supporting Agile Learning with Trello
An essential component of the process miniature is the integration of
suitable technology to make the learning efficient and comprehensive.
Kanban boards can be created on a wall or whiteboard with sticky post-
its or other physical artifacts, but there are many benefits to structuring
the agile learning process with a suitable software tool. To facilitate
learning in our context, we needed a tool that supported the main
features required for story cards and Kanban board columns, enabled
online distribution and team collaboration, was easy to learn, did not
require downloading or hosting, allowed private use and boards to be
copied, and was free to use. Although there are many tools that can
support the use of Kanban boards, and could therefore have equally
well supported this learning activity, many require a minimum
subscription to use (e.g. LeanKit), are free but require additional
payments for some key features (e.g. creating private boards in Taiga or
copying boards in KanbanFlow). Open source options are free but
require web hosting (e.g. Agile Apex). Given these constraints, the tool
we chose, which met all of our requirements, was Trello. Although Trello
is a generic, web-based visual tool it can be used for any kind of
planning or organization. Once a Trello board is created, users are able
to add movable lists.

These lists are well-suited to the creation of the columns on a Kanban
board. Editable cards can then be added to the lists. These cards have
a range of features to assist the user such as assigning team members,
and adding comments, descriptions, checklists and attachments, and
are able to be categorized by color. In the Kanban context, they make
ideal story cards.

�49

Using Trello as a Kanban board to support Scrum processes has a
number of advantages, including making progress visible to the whole
team and allowing details of every task (such as comments, checklists,
due dates, and attachments) to be added to cards. A key feature of
Trello is that it supports and tracks collaboration. It enables all team
members to participate in discussions, view the workflow, share files
and notes and comment on the various tasks in the workflow. Users can
also print, copy, and share their lists and the calendar feature helps
users to meet deadlines. This digital collaboration can be asynchronous
and distributed across locations. [13]

Comparison

Figure 15 - Decision management in Trello
Trello includes the ability to add GitHub as a third-party application. This
function allows you to link each card to a branch, commit, issue or pull
request. The developed software filters, card by card, commits of a

�50

single brach, while Trello gives the possibility to connect a commit for
each card or a branch for each card. This is not useful if more
functionality is developed on a single branch, since each feature
corresponds to a Kanban card.
The features in common between Trello and the software developed are
the following:

• Create a card with name, description and membership list

• Leave comments (in developed software are called Changes)

• Collaborate with multiple users in the same project

• Attach File

�51

Asana

Asana is a software-as-a-service designed to improve team
collaboration and work management. It helps teams manage projects
and tasks in one tool. Teams can create projects, assign work to
teammates, specify deadlines, and communicate about tasks directly in
Asana. It also includes reporting tools, file attachments, calendars, and
more.
In May 2013, Asana launched Organizations, a way for companies of all
sizes to use Asana, reporting tools to help teams monitor project
progress, and IT admin tools.
In 2014, Asana launched Calendar View for projects and tasks, its native
iOS app, and Dashboards.
In January 2015, Asana released its native Android app. Later that year,
the company added team conversations. In September 2015, Asana
unveiled a completely redesigned application and brand.
In 2016, Asana added administrator features including member
management, team management, and password and security
controls. Then, status updates were added so teams could
communicate the state of a project to stakeholders, and task
dependencies followed in July 2016. In September 2016, the company
launched custom fields, “an interface and architecture that will let you
tailor Asana’s information management to cover a variety of structured
data points”. A few months later, Asana launched Boards so teams
could organize and visualize their projects in columns. The Verge
reported that, “By integrating lists and boards into a single product,
Asana may have just vaulted ahead of its rivals.” The company also
released pre-made project templates.
In March 2017, Asana announced its integration with Microsoft
Teams, followed by the launch of custom project templates in June. In
fall 2017, start dates, a new integration with Gmail, and comment-only
projects were released. Also in November, Asana launched its app in
French and German.

�52

At the beginning of 2018, Asana launched a new CSV importer so teams
could upload their data into the app. In February 2018, the app was
released in Spanish and Portuguese. In March 2018, Asana announced
a new interactive feature called Timeline, which businesses can use to
visualize and map out their projects. [14]

Comparison

Figure 16 - Kanban board in Asana

Asana provides the ability, like the previous ones, to administer card
decisions as a board in Kanban development.

For each decision it is possible to add a name, a description and attach
any files. Here too there is the possibility of enabling a collaboration in
the whole project to assign tasks to different users with different roles.

�53

Figure 17 - Decision management in Asana

As in the previous ones, we find a similar administration of decisions,
with the possibility of adding attachments, assigning tasks and
deadlines and above all to keep track of the activity of what is being
done (such as Changes or comments for Trello).

In relation to the Git system, Asana offers the possibility of adding the
Github extension, but unlike the developed software that gives a single
repository, with only one branch, it filters the commits based on the
decisions you have in the project, Asana offers you the views of all the
commits in the added Github repository, as in figure 18.

�54

Figure 18 - Asana + Github [16]

So it's just a listing of what happens in the Github repository, without
splitting commits based on what happens decision by decision.

�55

Asana vs Trello

Table 2 - benchmarking between Asana and Trello software [15]

Asana Trello

Free or zero pricing for the basic service Activity feed

Quick overview on front and back of cards
 Add assignees, attachments, and hearts to tasks

Easy organization with tags, labels and
Categories

Automatic updates to email/inbox

Drag and drop functionality Create custom calendars and views

In-line editing Email bridge

Checklists, with progress meter My Tasks list and Focus Mode

Easy uploading of files and attachments Track tasks and add followers

Data filtering Get notifications and reminders

Archiving of card records (e.g. comments and
changes)

iPhone support, HTML5 mobile site

Deadline reminders Multiple workspaces

Email notifications Project Sections and Search Views

Activity log Real-time updates

Assign tasks See team members’ tasks and priorities

Voting feature Set goals, priorities, and due dates

Information retrieval and back-up Set project permissions

SSL encryption of data Project and task creation

Texts and visuals fit any screen size Comment on tasks

Search function Task dependencies

Mobile functionality to access boards on the go Gantt Charts (Asana has Timeline)

developer API Kanban support (Asana has boards)

�56

III. Results and future developments
The developed application has made it possible to create a system that
perfectly integrates the utility of a project management tool with the
possibility of following, step by step, what the developers are doing for
each single function designed.

It has been tried out in some work groups, university colleagues and
friends and 85% of whom have developed a great desire to use it every
day, while the remaining part has preferred to continue using existing
tools (understandable for large projects, now already initiated).

�57

15%

85%

Yes No

Continuous engineering in our software

As a first step, after the release of the application, we will integrate the
Continuous Engineering system.
To integrate this system it will be necessary to have a cloud computing
system, such as AWS, Azure or the one that provides GitHub (which we
already use). The idea is as follows: while the developers build the
project, the CI / CD system acts independently at each commit or every
n-day, creating a new version of the application that can be used by the
end user.

This will avoid having to make a huge merge every time you want to
release the application, especially if an application is very large with
several branches or with many design decisions.

Below is an example of how the Github system for CI / CD works, called
GitLab:

Figure 19 - How does continuous engineering of Github work

�58

Using GitLab for CI/CD

To use GitLab CI/CD, all you need is an application codebase hosted in
a Git repository, and for your build, test, and deployment scripts to be
specified in a file called .gitlab-ci.yml, located in the root path of
your repository.
In this file, you can define the scripts you want to run, define include and
cache dependencies, choose commands you want to run in sequence
and those you want to run in parallel, define where you want to deploy
your app, and specify whether you will want to run the scripts
automatically or trigger any of them manually. Once you’re familiar with
GitLab CI/CD you can add more advanced steps into the configuration
file.
To add scripts to that file, you’ll need to organize them in a sequence
that suits your application and are in accordance with the tests you wish
to perform. To visualize the process, imagine that all the scripts you add
to the configuration file are the same as the commands you run on a
terminal in your computer.
Once you’ve added your .gitlab-ci.yml configuration file to your
repository, GitLab will detect it and run your scripts with the tool
called GitLab Runner, which works similarly to your terminal.
The scripts are grouped into jobs, and together they compose
a pipeline. A minimalist example of .gitlab-ci.yml file could contain:
before_script:
 - apt-get install rubygems ruby-dev -y
run-test:
 script:
 - ruby --version

The before_script attribute would install the dependencies for your
app before running anything, and a job called run-test would print
the Ruby version of the current system. Both of them compose
a pipeline triggered at every push to any branch of the repository.

�59

https://docs.gitlab.com/ee/ci/yaml/README.html

GitLab CI/CD not only executes the jobs you’ve set, but also shows you
what’s happening during execution, as you would see in your terminal:

You create the strategy for your app and GitLab runs the pipeline for you
according to what you’ve defined. Your pipeline status is also displayed
by GitLab:

At the end, if anything goes wrong, you can easily roll back all the
changes: [17]

�60

Git and social developments

Git: a feature we want to develop is the ability to provide the user who
creates a project, to choose the Git server that he prefers (SourceTree,
BitBucket, etc.).

When you insert a new project, you will choose a server, among those
present on the platform (already pre-installed), entering all the
specifications that that type of server requires to return the data (ex
commits); otherwise you could have a new git server inserted with all the
required address specifications. Obviously this possibility could
influence the use of Github's CI / CD, so also this functionality will
undergo changes giving the opportunity, also in the Continuous
Engineering settings, to choose which server to use and to give, in input
to this server, addresses and properties of the git repositories chosen
during project creation.

Social: This last future development is related to a section of Social
communication between users:
chat (single chat or group chat).

create development groups with custom tags

The general idea is to create features that are used by the Slack
software, already exploited in many large software development
situations.

With all these developments, we will try to combine most of the features
provided by so many software, in a single solution, making the
development experience of medium / large design and software
development companies easier, faster and more interactive.

�61

IV. Bibliografy
[1] Stapleton J., "DSDM Dynamic Systems Development Method: The
Method in Practice", Addison Wesley, 1997

[2] Toward Architectural Knowledge Sustainability: New Opportunities to
Extend the Longevity of Systems, Rafael Capilla, Elisa Yumi Nakagawa,
Uwe Zdun, Carlos Carrillo

[3] https://git-scm.com/about

[4] R. Tim, S. Tanachutiwat, M. Vukadinovic, H. Schlebusch and H.
Lichter, "Continuous integration processes for modern client-side web
applications," 2017 International Electrical Engineering Congress
(iEECON), Pattaya, 2017, pp. 1-4.

[5] M. Shahin, M. Ali Babar and L. Zhu, "Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices," in IEEE Access, vol. 5, pp. 3909-3943, 2017.

[6] https://getbootstrap.com/

[7] https://jquery.com/

[8] https://httpd.apache.org/

[9] http://www.slimframework.com/

[10] https://www.mountaingoatsoftware.com/agile/scrum

[11] https://developer.github.com/v3/repos/commits/

�62

https://git-scm.com/about
https://getbootstrap.com/
https://jquery.com/
https://httpd.apache.org/
http://www.slimframework.com/
https://www.mountaingoatsoftware.com/agile/scrum
https://developer.github.com/v3/repos/commits/

[12] M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen and P.
Abrahamsson, "On the Impact of Kanban on Software Project Work: An
Empirical Case Study Investigation," 2011 16th IEEE International
Conference on Engineering of Complex Computer Systems, Las Vegas,
NV, 2011, pp. 305-314.

[13] D. Parsons, R. Thorn, M. Inkila and K. MacCallum, "Using Trello to
Support Agile and Lean Learning with Scrum and Kanban in Teacher
Professional Development," 2018 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE),
Wollongong, NSW, 2018, pp. 720-724.

[14] https://en.wikipedia.org/wiki/Asana_(software)

[15] https://comparisons.financesonline.com/asana-vs-trello

[16] https://asana.com/apps/github

[17] https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-
cicd-works

�63

https://en.wikipedia.org/wiki/Asana_(software)
https://comparisons.financesonline.com/asana-vs-trello
https://asana.com/apps/github
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works
https://docs.gitlab.com/ee/ci/introduction/index.html#how-gitlab-cicd-works

	Software sustainability and maintenance in industries
	Index
	I. Introduction
	Continuos Integration
	Continuous Deployment

	II. Software developed
	Trello
	Asana
	Asana vs Trello

	III. Results and future developments
	Continuous engineering in our software
	Git and social developments

	IV. Bibliografy

